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Based on theoretical analysis and laboratory data, we proposed a unified two-para- 
meter wave spectral model as 

with /? and m as functions of the internal parameter, the significant slope § of the 
wave field which is defined as 

where F i s  the mean squared surface elevation, and A,, no are the wavelength and fre- 
quency of the waves at the spectral peak. This spectral model is independent of local 
wind. Because the spectral model depends only on internal parameters, it contains 
information about fluid-dynamical processes. For example, it maintains a variable 
bandwidth as a function of the significant slope which measures the nonlinearity of 
the wave field. And it also contains the exact total energy of the true spectrum. 
Comparisons of this spectral model with the JONSWAP model and field data show 
excellent agreements. Thus we established an alternative approach for spectral 
models. Future research efforts should concentrate on relating the internal parameters 
to the external environmental variables. 

1. Introduction 
As wind blows over the ocean, waves are generated. Their motions are random in 

nature; therefore any description of the wave field has to be of its statistical properties. 
Among the various statistical measures, spectral analysis is the most powerful means. 
The spectral function is not only important due to its own information content; it is 
needed also because various other statistical measures of the surface wave field are 
expressedeitherin terms of or by quantities derived from the spectrum (see, for example, 
Longuet-Higgins 1962). Thus, the spectral functional form becomes an urgently 
sought goal. However, because the wind-wave generation process is very complicated 
(see, for example, Phillips 1977), it is impossible to compute the spectral function 
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from the basic mathematical-physical laws. As a result, the void due to the lack of 
a spectral function has been filled in by various empirical or semi-empirical models. 

Most of the recent spectral models can be traced to the common starting point of 
the spectral function proposed by Phillips (1958) who used dimensional analysis to 
derive the upper limit of the equilibrium or the saturation range spectral form. Thus 
$(n) was expressed as 

(1.1) $(n) = ' g 2  3 for n > no, 

which is sometimes approximated by 

where /3 is a universal constant, g is the gravitational acceleration and n is the fre- 
quency in rad/s with no as the frequency at  the spectral peak. Later Pierson & Mosko- 
witz (1964), based on equation (1.1) and some additional similarity analysis of 
Kitaigorodskii ( 1962), proposed a continuous functional model as 

where 

#(n) = PS2 -exp (-a (:)4), 
n5 

no E (0.8 - 1.0) g/U, 

with a as an additional constant and U as the mean wind speed. Although some field 
and laboratory observations did provide data to support these models, there are still 
some difficulties in practical applications. In  the first place, the spectral function, in 
general, models the high-frequency range better than that near the spectral peak 
where the energy is concentrated. But it is the energy content of the spectrum that 
is more important in applications. Secondly, the spectral models given in (1.2) and 
(1.3) are based on the physical conditions of equilibrium, i.e. a saturated or fully 
developed sea state. In the field, the area and duration of the sea that is fully developed 
is quite limited. Accordingly the usefulness of the models for fully developed sea are 
also limited. 

The effort to find a generalized spectral function for the unsaturated sea culminated 
in the JONSWAP experiments where the spectra measured in fetch-limited (i.e. un- 
saturated or not yet fully developed) conditions were analysed extensively. It was 
found that the disagreement between JONSWAP data and the Pierson-Moskowitz 
model was indeed near the peak. Since this range for all practical purposes contains 
most of the energy, it is important to model it correctly. As a result of the experiment, 
Hasselmann et al. (1976) proposed the now well-known JONSWAP spectral model as 

where 

and 



A unijed two-parameter wave spectral model 205 

with q5gZx as the spectral maximum derived from the Pierson-Moskowitz model, and, 
(T~,  ( T ~  are additional constants. This spectral model is basically the Pierson-Moskowitz 
model with an additional peak-enhancement function yen. When y = 1, (1.4) reduces 
to  (1.3) exactly. But the mean value of y for all the JONSWAP experiment is around 
3.3. In order to  use (1.4), one will have to determine the five free parameters, all of 
which are given empirically as functions of the non-dimensional peak frequency, 
f i ,  defined as 

fi = Un,/g. 

The significance of (1.4) is not that it fits data better. It should, because all the adjust- 
able free parameters are determined by curve fitting. The real significance of (1.4) is 
that it is the first spectral function proposed for the unsaturated sea, while all the 
previous models are proposed for a fully developed sea only. Limitations on applying 
(1.4)) however, still exist. I n  the first place, (1.4) contains numerous free parameters 
that cannot be determined a priori. Although empirical relationships reduce the 
parameters to two, the agreements between some of the empirical formulae and the 
data are rather crude, as shown by the statistical analysis summarized in Hasselmann 
et al. (1976). This makes the accuracy uncertain and application less convenient. 
Secondly, (1.4) is designed for the fetch-limited developing sea state cases only. 
Whether it also fits an unsaturated but decaying sea is more problematical. Never- 
theless, the unsaturated spectral model offered by the JONSWAP experiments did 
open a new possibility of other spectral models for the non-saturated sea. 

I n  this paper, we shall propose a new unified spectral model to represent the sea 
state under all stages of wave development and decay using only internal parameters. 
Although the data we used to derive the spectral form are collected in the laboratory, 
the analysis procedures used are based on dynamical considerations and are believed 
to be general in nature. Comparisons with published field results support this con- 
clusion. Additional field experiments are being planned and the results of these will 
be presented later. 

2. The proposed spectral model 
The proposed spectral model is based on the laboratory data collected in the wind- 

wave-current interaction channel a t  NASA Wallops Flight Center. The detailed 
description of the laboratory facilities can be found in Huang & Long (1980). A group 
of spectra under various wind speeds are given in figure 1 (a )  and a typical individual 
spectrum is given in figure l ( b ) .  From figure l ( a ) ,  it is obvious that the saturated 
range upper limit as proposed by Phillips (1958) indeed exists. But this limit does not 
fit the individual spectra. Because our goal is to derive a model for the individual 
spectrum, we have to examine a typical spectrum in detail. Several features of this 
typical spectrum can easily be seen. First, the spectral bandwidth is usually very 
narrow. Secondly, the spectrum has a well-defined main peak and a secondary peak 
located a t  twice the peak frequency. Thirdly, the best-fitted envelope of the individual 
spectrum has a slope different, sometimes substantially so, from the generally accepted 
- 5 law. This is especially true for the gentle wind cases (u* < 20 cm 5-l). Finally, if 
we connect the main peak and the secondary peak by a straight line, it always provides 
us with a, very good envelope of the whole high-frequency range. 
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FIGURE 1. ( a )  A group of laboratory wind-wave energy spectra under different wind speeds. 
_-- , indicates tho - 5 slope limit as proposed by Phillips (1955). (b )  A typicallaboratory wind- 
wave energy spectrum. The dashed line connects the primary and the second harmonic peaks t o  
form an envelope of the high-frequency range. 

Frequency (Hz) Frequency (Hz) 

The first feature is a generally accepted observational fact which enables us to  use 
the narrow-band assumption in most of the statistical studies (see, for example, 
Longuet-Higgins 1957, 1962). The second feature is true for all the laboratory wave 
spectra. I n  the field, waves may be generated by different weather systems. Then the 
spectrum may have multiple primary peaks. We shall discuss these cases separately 
later in this paper. For the time being we shall concentrate on the single peak case. 
Even with a single peak, the second harmonics in the field spectrum may be less pro- 
minent than in the laboratory. This is because most waves in the field are not as steep 
and hence less nonlinear than the laboratory waves. Nevertheless the second harmonic 
peak does exist in all the carefully analysed data (see, for example, Kinsman 1960). 
The third feature reinforces the need for a peak-enhancement function; i.e. a slope of 
strictly - 5 would not cover the range near the peak. Now if we use the line defined 
by the straight line connecting the main and the secondary peaks as the envelope, 
we can derive a closed form expression for its slope changes based on the dynamics 
of the wave motions. I n  fact, we can use a very simple model to prove that this secon- 
dary peak is the second harmonics according to the Stokes expansion. The proof can 
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be given as follows. Since the spectrum is narrow band, it follows that in the limit it 
can be approximated by a single train of waves. Using Stokes’ expansion, we can 
write the surface elevation a t  a fixed location, <(x, t ) ,  as 

<(x, t )  = a cosx + +a2k,cos 231 + . . ., ( 2 . 1 )  

where a is the wave amplitude, k, is the wavenumber and x is the phase function. 
The frequency spectrum of this surface will have only two spikes located a t  n, and 
2n0.  The amplitudes of the spikes are proportional to a2 and (&i%,)2. Consequently, 
the line connecting the two peaks will have a slope 

m = l  log 8 
log n, - log 2n, 

For a narrow-band case as we have here, this approximation should work very well. 
For a broader band, the peak can be regarded as a collection of waves each having its 
own harmonics. Therefore, the slope of the line connecting the main and the harmonic 
peaks should still be governed by (2.2). However, for a random wave field, the 
amplitude should be substituted by the r.m.s. surface elevation, and k, by the 
wavenumber a t  the spectral peak. We thus make the substitution 

a 27r - 
(<”$ = 3, k, = -. 

4l (2.3) 

With A, above as the wavelength corresponding to the waves a t  the spectrum peak, 
then ( 2 . 2 )  can be written as 

where the symbol 5 is called the significant slope of the wave field, defined as 

All the spectra from the laboratory data were used to test this relationship.The 
measured slope of the line connecting the main and the secondary peaks a t  twice the 
peak frequency is plotted as a function of 5 in figure 2,  together with the curve defined 
by (2.4). The agreement is very good. This proves that the secondary peaks are indeed 
the second harmonics for Stokian waves. 

If we push the waves to the limit of breaking, then we would have a / h  = 1/14 or 
5 = 0.0505. Using this limiting value of 5 ,  we get m = 4-312 from (2.4). This number 
is very close to the - 5 law proposed by Phillips (1958). Laboratory data that we have 
obtained has never reached this limit. Under extremely high wind conditions 
(u* 2 100 cm s-l, when all the waves are breaking violently and many water par- 
ticles are airborne), the § value only reached 0.04 and the slope of the spectrum 
clustered near a limit of 5.5.  As the wind decreased, waves became more gentle, and 
thus the 5 value decreased as well. The spectrum also became increasingly narrow. 
The measured m and the calculated value agree very well throughout all the range. 



208 N .  E. Huang, 8. R. Long, C-C. Tung, Y .  Yuen and L. F .  Bliven 

9 

8 -  

1 -  

6 -  

5 -  

m 

4 -  

3 -  ' 1 ' 1 1  I I I I 
0.005 0.0 1 0.02 0.03 0.04 0.05 

$ 

FIGURE 2. The slope of the high-frequency-range envelope defined by the line connecting 
the primary and second harmonic peaks as function of §. Solid line from equation (2.4). 

The coincidence of the slope value approaching to the Phillips - 5  law is very 
interesting. The fact that the empirically derived law based on dimensional analysis 
compares well with a simple calculation based on dynamical considerations is more 
than a pleasant surprise. I n  fact, we can show that the line connecting the main and 
the second harmonic peak should be the envelope, and therefore the limit is indeed 
near - 5. Based on the nonlinear wave-wave interaction theory proposed by Phillips 
(1960) and extended to the random wave field by Hasselmann (1962, 1963a, b) ,  the 
net effect of the nonlinear interaction is to shift the energy peak towards lower fre- 
quencies. This shift is incapable of generating prominent peaks on the high-frequency 
side of the spectrum. This is reinforced by the high rate of dissipation there. Conse- 
quently, on the high-frequency side, the only prominent peaks will be the higher 
harmonics resulting from the finite-amplitude effects of wave distortion. Field obser- 
vations by Kinsman (1960) and theoretical calculations by Tick (1959) all confirmed 
these results. Thus, the line connecting the primary and second harmonic peaks should 
be the upper bound of the high-frequency spectrum range. Then equation (2.4) gives 
the maximum slope value as 4.312, a number extremely close to Phillips' dimensional 
analysis result. However, the sharper result based on dynamic considerations given 
in (2.4) offers a generalization of Phillips' - 5 law. Thus we have a rule that will govern 
the shape of the high-frequency side of the spectrum under saturated as well as un- 
saturated seas. 

Since 5 is a measure of wave slope, it is the indicator of nonlinearity of the waves. 
Thus the changing of the spectral shape with § agrees perfectly with the conclusion 
drawn by Hasselmann et al. (1976), who, after extensive comparisons between theo- 
retical and experimental results, concluded that the shape of the spectrum is inde- 
pendent of the detailed distribution of the input and dissipation functions, and is 
controlled primarily by the nonlinear energy transfer. 

Now let us restate how the result of this simple calculation can be used to explain 
what happens in the natural environment. Under strong wind nnd limited fetch, the 
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sea will grow. If the fetch is long enough, the sea state may become fully developed. 
But, prior to this saturated stage, the spectrum will not follow the Pierson-Moslrowitz 
model. It may approach the fully developed spectrum by shifting the peak to lower 
frequency and broadening the bandwidth. As the waves propagate outside the storm 
area or as the storm dies off, the spectrum will become narrower and steeper. Since the 
shape of the spectrum is controlled primarily by the nonlinear energy transfer as 
concluded by Hasselmann et al. (1976), it  is only logical to use the internal parameter § 
that measures nonlinearity to parametrize the spectral function. In this case, the wind 
speed, the duration, and the fetch all fade into the background. The integrated 
influence of all these external variables is reflected only in the geometric shape of the 
waves which in turn is measured by the parameter 5 .  Thus we proposed an alternative 
approach for spectral models. Of course, the relationship between the internal para- 
meters and the external variables is still lacking. Such a relationship is beyond the 
scope of this paper and should be the central problem of future research. Nevertheless, 
if one adopts the present approach, the necessary internal parameters can all be ob- 
tained from simple satellite observations. The details of this will be discussed later. 

Based on these reasons, we proposed a new spectral model as 

where p, S and 7 are coeficient functions to be determined. The justifications of this 
basic form are as follows. We adopt 

P9”G 

to give the spectral function the correct dimensions. Since the slope of the high- 
frequency side is determined by m, we incorporate this as 

The last part is purely empirical to render the spectral function as a continuous 
function in an analytical form. This spectral function looks as if it contains five free 
parameters; two scale parameters ,O and no, and three shape parameters m, 6 and 7. 
But the parameters are not really free. Some of these can be determined explicitly. 

Since no is the frequency at  the spectral peak, we should have 

From (2.6) and (2.7) one can easily show that 

m = 67. 

If we choose 7 = 4 as did Pierson-Moskowitz 
then 

6 =  t m .  

n = no. (2.7) 

(2.8) 

(1964) and Hasselmann et al. (1976), 

(2.9) 

Furthermore, by the definition of the spectral function, we have 

= Sm $(n)dn. (2.10) 
0 
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By using the dispersive relationship of n: = gk, one can again show after some algebra 
that 

(2.11) 

with I?( ) as the gamma function. 
Because m is a function of § as shown in (2.4)) and both S and p are functions of n ~ ,  

it follows that three of the five parameters are reduced to a single parameter, §. After 
we choose 7 = 4, the spectrum is determined by only two free parameters no and §. 
An alternative form of (2.6) is thus 

(2.12) 

with m and /3 given in (2.4) and (2.1 1) respectively. This spectral model is called the 
Wallops spectrum for future references. 

3. Comparison of the Wallops spectrum with the JONSWAP spectrum and 
field data 

Since the introduction of the JONSWAP spectrum, it quickly became the standard 
spectrum form in the field of wave research. To show how the Wallops spectrum 
compares with the JONSWAP spectrum and the field data should be very illustrative. 
For lack of the JONSWAP data or results in digital form, our comparison is limited 
to the published spectra in Hasselmann et al. (1976). In  that paper four spectra from 
both hurricanes and open ocean cases are given as examples for comparison with the 
JONSWAP model. The spectra are all normalized by the value a t  the spectral peak. 
The functional form for the normalized Wallops spectrum is easily shown to be 

The comparisons of (3.1) with field data and the JONSWAP model together with the 
Pierson-Moskowitz model are given in figures 3(a, b, c, d )  arranged in decreasing 
peak frequency. The agreement between the JONSWAP model and the field data is, 
of course, the best because the JONSWAP model is essentially a curve-fitting product 
with five free parameters to be adjusted. The Pierson-Moskowitz spectrum is uni- 
formly overestimated. This is also to be expected because it is designed for the fully 
developed sea. These examples reiterate the fact that a fully developed sea is a rarity, 
because, even under hurricanes in the open ocean, the sea is still far from being fully 
developed. 

The agreement between the Wallops spectrum and the field data is almost perfect 
for three out of the four cases. The case in which they do not agree very well is shown 
in figure 3(a) ,  where several anomalies can easily be seen. First, the field spectrum 
has a low-frequency swell component. This swell peak could contribute to the total 
energy and make the r.m.s. elevation high, thus resulting in an artificially high value 
of §. Those cases with multiple peaks will be discussed later. Secondly, the y value 
for this spectrum is 6.04 which is also extremely high. This unusually high value of y 
may suggest that this field data case needs careful re-examination. 

A second comparison is made with the field data of Mitsuyasu et al. (1980) as shown 
in figure 4. The agreement is similar to that in the JONSWAP cases. In  all fairness, 
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FIGURE 3. Comparisons of the Wallops spectrum [----), with the JONSWAP spectrum (-+-.-), 
the Pierson-Moskowitz spectrum (. * * .) and the field data (--). Spectra data from Hassel- 
mann et al. (1976). (a) Argus Island, no = 0.133Hz, $ = 0.01145; (b) W. Atlantic, 
no = 0.093 Hz, $ = 0-00815; (c) Hurricane Ava, no = 0.087 Hz, $ = 0.0072; ( d )  Hurricane 
Camille, no = O.O6SHz, $ = 0.00625. 

it should be pointed out that this comparison is not the best way to test the spectral 
models. This is because, by the normalization procedure, the /3 coefficient which 
determines the total energy level was left out. Furthermore, this normalization scheme 
also attached too much weight to the value of $(no). An error of one point may signi- 
ficantly change the shape of the whole normalized spectrum. However, for lack of the 
true spectrum, these comparisons do offer some reference to the reality of the Wallops 
model which is derived based on detailed analysis of the laboratory data alone. 

4. Some properties of the Wallops spectral model 
The Wallops spectral model proposed here has much in common with the models 

used a t  the present time. It has the dimension similar to the Phillips (1958) saturation 
range spectrum; the analytic form of the Pierson-Moskowitz (1964) model; and the 
results similar to JONSWAP. In fact, when the energy-containing waves are approach- 
ing breaking, the m value decreases to the neighbourhood of 5 .  Then the Wallops 
model will reduce exactly to the Pierson-Moskowitz model. At that time, y = 1 for 
JONSWAP. Then all three spectral models will be identical. The similarity stops here. 
There are a number of special properties that will set the Wallops model apart from 
not only the traditional form but also the traditional way of thinking. 

First, the Wallops spectral model does not depend on the local wind condition. 
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E = 0.5293 mz, fo = 0.112 Hz. 

Unlike Pierson-Moskowitz who related no to mean wind or unlike JONSWAP where 
all the free parameters were related to noU/g, the Wallops model depends on the 
internal parameters no and 5 ,  the significant slope. From a theoretical point of view, 
our parametrization scheme can be justified along the lines of the conclusion of 
Hasselmann et al. (1976) discussed earlier in this paper. Intuitively, the justification 
can be presented as follows. Even though waves derive their energy from the wind, 
the fact remains that the water has a mass one thousand times that of the air. Once 
the energy is coupled into the water in the form of waves, the water waves have a 
much longer memory of what has happened. For example, as the waves propagate 
out of the storm area, the waves will still be high but the local wind can be rather low. 
An extreme case can be given by the experience of standing a t  the beach where waves 
always come toward the observer no matter what is the local wind direction. Of 
course, an ideal solution of the wave problem should be the one based on the physical 
laws. Then wind, fetch, duration, and the initial conditions will all be important 
parameters. Even then the ultimate integrated effect is still shown in the wave forms. 
The remaining problem for us is to find out the exact relationship between the internal 
parameters 5 and no and the external variables. Short of that, using the wave form 
parameters is the only logical alternative and practicable way. 

Secondly, the Wallops spectral model has reduced the necessity of empirically 
determined parameters to a minimum. Out of the five free parameters, three were 
determined by dynamical or analytical means which reduce p ,  B and m to functions 
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FIQURE 5. Comparison of the experimentally determined p, (0) with the calculated value 
from equation (2.11) (--) and equation (5.6) (- * . *). 

of 5 .  There is, however, one element of arbitrariness in the model, i.e. the value of 7 
in (2.6) is set a t  4 without any rigorous justification. At the present time, we can only 
argue that field observations seem to suggest this value. Additional study is needed 
here. Without any extensive field data at our disposal, we will leave it a t  4. Future 
study may offer modifications that may improve the agreement between the data 
and the model. 

Thirdly, the Wallops spectral model satisfies the total energy content of the spec- 
trum automatically. Although the form of the Wallops model is similar to that of 
Pierson-Moskowitz, the coefficient, ~3 is not the Phillips constant. In  general, it can- 
not even be used to make comparisons with the Phillips coefficient. A comparison of 
p values calculated from (2.11) with the laboratory data is shown in figure 5. The 
agreement of the values and the trend are excellent. An important consequence of the 
procedure used to determine ,8 by (2.10) is that the spectrum automatically satisfies 
the total energy content requirements, i.e. the total area under the proposed spectrum 
is always equal to that of the true spectrum. This property is not guaranteed in any 
other spectral model where p is determined empirically, independent of energy con- 
siderations. Having had the total energy content correctly modelled, we are guaranteed 
a perfect agreement if the shapes also fit as in figures 3 ( b ,  c, d )  and 4. 

It should be pointed out that, under the special condition when m is fixed a t  the 
value of 5, then p would be the Phillips coefficient as in the Pierson-Moskowitz model. 
Then by (2.11), one would get 

/? = 5 ( 2 ~ $ ) ~  = 207~'$~. (4.1) 

This value can be easily shown to be in very good agreement with the JONSWAP 
data. In  order to make a comparison between the formulae derived here and the 
observational data, we made a set of special measurements by forcing a - 5 line on 
our spectra. /? values are estimated from such fittings. The resulting values of p from 
our laboratory spectra are plotted in figure 6 ( a )  together with the JONSWAP values 
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FIGURE 6. (a )  The variation of the equilibrium range coefficient, ,9, with the significant slope, 5. 
This study 0.  JONSWAP data as reported by Muller (1976); 0, series A;  A, series C ;  0, 
series E ; solid curve p = 16 7r2O2 ; dotted curve p = 20 7r2g2. ( b )  The variation of the equilibrium 
range coefficient, p, with the non-dimensional fetch, gx/uG. Laboratory results group to the left, 
field data to the right. 0 ,  the present study; C ,  Toba (1973); 4, Sutherland (1968); 0, Wu 
et al. (1977), average; 0, Wu et aE. (1977), best fit; 0, Mitsuyasu (1968),laboratory; 0,Hassel- 
mann e t a l .  (1973); 0, Liu (1971); 0, Longuet-Higgins, Cartwright & Smith (1963); A, Rurling 
(1959); V ,  Pierson (1962); 0 ,  Mitsuyasu (1968), Hakata Bay; 0, Hicks (1960); m, Kinsman 
( 1960) ; 0,  Elliott (1  972) ; A ,  Imasato ( 1976). 
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of p .  The values of ,8 as determined by equation (4.1) are shown. I n  general) the 
agreement is quite good, though it  is not as good for the laboratory data as in figure 5. 
The subjective judgment in curve fitting may be the cause of the bias. Nevertheless, 
this comparison is still quite impressive in contrast to the parametrization scheme 
proposed by Hasselmann et al. (1976) and Wu, Hsu & Street (1977) where ,8 was 
thought to be a function of the non-dimensional fetch as shown in figure 6(b). When 
considering the non-dimensional fetch, the field data and the laboratory data seem 
to fall into distinctly different clusters. It is not obvious how the two clusters can 
eventually merge smoothly even if the length of the laboratory channel could be 
extended to become comparable with some of the field cases conducted in lakes or 
enclosed bays (for example, Burling 1959 or Kinsman 1960). Although attempts have 
been made to draw a straight line through the points, as found in Hasselmann et al. 
(1976) and Wu et al. (1977), the fit is not really impressive. Such curve fitting also 
ignores the existing trend within each individual cluster. Faced with the evidence 
presented here, we feel that parametrization ofj3 by such empirical formula in terms 
of the non-dimensional fetch should be abandoned. I n  fact, one of the best-fitted 
curves in the JONSWAP results is 

where 

(4.3) 

in which U is the mean wind speed and f m  is the frequency at  the spectral peak in Hz. 
The /3 is the equilibrium coefficient function. If we combine (4.2) and (4.3)) and with 
the help of the dispersion relationship, we would get 

/3 = 16*04n2§2. (4.4) 

This value is very close to that given in (4.1) which resulted from m being fixed a t  
m = 5. 

These results further demonstrate the advantages of the internal variable parametri- 
zation scheme as compared with the conventional external variable parametrization 
approach in spectral function modelling. 

It should be emphasized that this comparison is only meaningful if we force the 
spectrum to an m = 5 value as was done in Pierson-Moskowitz and JONSWAP. 
The agreement of the /3 value with the JONSWAP data a t  m = 5 should not be used 
as evidence to prove the m value should be fixed at  5. When m = 5, we have the 
Pierson-Moskowitz model or the JONSWAP model without the peak enhancement 
function. It is, however, unlikely that m will approach 5 in the field. The examples in 
figures 3 (a, b, c ,  d )  and 4 are all from open ocean and some even under hurricanes. But 
none of the cases have an m value anywhere near 5. On the other hand, it should also 
be pointed out that the present result should not be used to disprove the Phillips - 5 
law either. Enough evidence, both from laboratory and the field, indicates that  the 
spectral shape indeed fo l l~wsn-~  for n > 2n, for some cases. But, invariably, the energy 
content in such a range is always negligible. The point we want to make here is to 
model the energy-containing part of the spectrum. This spectral model may not work 
as well as Phillips’ saturated range spectrum and its derivatives a t  the high-frequency 
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range. But it is believed to  offer a superior alternative for the cases when the energy 
content is the critical consideration. 

Fourthly, the Wallops spectral model maintains a variable bandwidth. Spectral 
bandwidth is not only an important measure of the spectral shape, but also the crucial 
parameter to determine the group length of the wave packets (see, for example, 
Longuet-Higgins 1976, 1962). To discuss the spectral bandwidth, we have to define 
the moments of the spectrum. Let the ith moment of the spectrum, Mi, be defined as 

Then 

In general. one can show that 

Let us follow Longuet-Higgins (1957) to define the spectral bandwidth, v, as 

v2 = p2/M2, (4 .8)  

where ,uz is the second central moment of the spectrum, i.e. 

with ii = MJM, as the mean frequency. Then we can show, after some algebra, that  

(4.9) 

Since m is a function of 5,  clearly v is a function of 5 alone. Thus the present model 
gives a spectrum of variable bandwidth depending upon the nonlinearity of the waves 
in the field. 

If we fixed m = 5, we would get a fixed value of v a t  0.468 for the Pierson-Moskowitz 
spectrum. If we use the simpler spectrum as given in (1.2), we would have v = 0.35. 
The v values of all the available spectra from the laboratory are plotted in figure 7 
together with the calculated value from (4.9).  The agreement between the data and 
the model function is not exact, but the trend is unmistakable. Neither the Pierson- 
Moskowitz nor the simpler spectrum in ( 1.2) can model the trend as shown in figure 7. 
Unfortunately, we do not have the digital form of the JONSWAP spectra data, 
otherwise such a direct quantitative comparison would be most interesting. However, 
based on the agreement of the spectral shape on visual inspection, the agreement in 
bandwidth between field data and our model is to be expected. 

Since the bandwidth is the parameter to determine the group length, we will try 
to calculate the group length, which has very important practical applications. 
According to recent observations, most of the damage to ships and ocean engineering 
installations is caused not by a single big wave, but by the combination of the big 
waves coming in groups. The mean number of waves in a wave group was calculated 
by Longuet-Higgins (1962) as 

(4.10) 
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FIGURE 7.  Comparison of the experimentally determined bandwidth parameter Y (0) with that 
of the Pierson-Moskowitz spectrum (---), the Phillips spectrum given in equation (1.2) (-.- .-), 
the full Wallops spectrum (-), and as determined by equation (5.7) (. * . . .). 

If we use the Pierson-Moskowitz spectrum, all the groups will contain exactly the 
same mean number of waves. And each group will have 1.5 waves in the mean. If we 
use the present model with the variable bandwidth, the group length will vary from 
one sea state to another depending on the significant slope of the wave field. The four 
spectra given in figures 3(a,  b ,  c, d )  give a mean value of 5 = 0.0083 which will 
generate a v = 0.16. Then equation (4.10) gives N = 4, a number very suggestive of 
the common folklore that every fourth (or seventh) wave is the highest. 

The calculated bandwidth can also be used to justify the narrow-band approxima- 
tion used earlier. The narrowness of the spectrum can be regarded as a consequence 
of the weak nonlinear wave-wave interaction (see, for example, Phillips 1977). 
According to  the nonlinear interaction theory of Hasselmann (1962, 1 9 6 3 ~ )  b) ,  the 
energy transfer between different wave components are weak in general. The net 
effect is to make the flow of energy occur from the high-frequency to the low-frequency 
components. Consequently, whatever energy was transferred would be concentrated 
near the peak. Additional energy would be dissipated in breaking. Thus all spectra 
show a prominent peak and a sharp frontal face which satisfies the narrow-band 
approximation very well. 

Finally, we have to address the complicated case of multiple peaks. Such cases are 
commonly generated by different weather systems. The present spectral model can- 
not handle this case easily, nor can the earlier ones. However, if we use the fact of 
weak interaction, we can apply the principle of superposition to decompose the given 
wave field into independent sub-fields from each storm system. The proposed spectrum 
model will be applicable to each sub-field and the algebraic sum will be the final 
answer. This answer would be an approximation only. However, this approximation 
would be highly accurate because of weak nonlinear interactions. 
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5. An application of the Wallops spectrum 
The inputs to initiate the spectrum are quite unconventional. The two internal 

parameters no and 5 ,  however, are not difficult to obtain. Routine field observations 
give the significant wave height (which is related to  F ) ,  and dominant frequency 
(which is no). With these two quantities, we can calculate the significant slope with 
the help of the dispersive relationship, and then define the spectrum. 

An alternative and a more desirable way of defining the spectrum is touse the remote 
sensing method. Specifically, we can derive all the necessary parameters from a 
radar altimeter. A radar altimeter is a narrow-beam, pulsed, nadir-directed radar. 
The measurement of the total travel time between the satellite and surface 
determines the altitude of the satellite. When the radar pulse is reflected from the 
ocean surface, the return pulse shape contains the information of the probability 
distribution of the wave height (McGoogan 1975). Therefore, by processing the 
return pulse data, we can get not only the r.m.s. wave height (Parsons 1979)) but 
also other statistical properties such as the skewness of the surface wave elevation 
distribution. This coupled with the results by Huang & Long (1980) which showed that 

one can actually get the § and no (calculated from A,) from the altimeter data. The 
feasibility of this approach was established by Walsh (1979). Thus once an altimeter 
is available, the data will enable us to calculate wave spectra directly. However, the 
key link between the satellite data and the extraction of the necessary information 
for the eventual applications is based only on an empirical relationship derived from 
laboratory and very limited field data by Huang & Long (1980). Although comparison 
between (5.1) and available data showed good agreement, it would be highly desirable 
tofindarigorous theoreticalguide forthisresult so that (5.1) can beusedwithconfidence. 

The theoretical groundwork has actually been previously done by Longuet-Higgins 
(1963). He showed that the skewness can be expressed in terms of the directional 
spectrum in a complicated convolution form. Because such a form is impractical if 
not impossible for routine calculation, he further established the limits of the skewness 
in terms of the one-dimensional frequency spectrum only. The theoretically derived 
limits of the skewness are given by 

0.44L < K3 < l.OiL, 
with 

The quantity I is given by 
L = I/(@. 

I = 12sOm [lo‘ k#(n)  c~n] dn’, 

t These expressions were independently checked by us using an integral representation of 
the surface wave field as in Huang & Tung (1 976). The results are identical with those derived by 
Longuet-Higgins (1963). Recently D. Barrick and F. Jackson (private communications) both 
pointed out that the expansion of surface elevation in Longuet-Higgins (1 963) will not reduce 
to the classical Stokes waves for a delta-shaped spectrum. According to their derivations, the 
result is a factor of 2 smaller than ( 5 . 2 ) .  A similar factor of 2 discrepancy also existed in the non- 
linear effect on phase velocity in a random wave field as reported by Huang & Tung (1976). 
Further investigation on this point, is needed. 
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where #(n) is the frequency spectrum, k is the wavenumber and n is the frequency in 
rad/s. Comparisons between (5.2) calculated numerically and the experimentally 
determined skewness based on Kinsman (1960) were made by Longuet-Higgins 
(1963). The agreement was very good. This indicated that the bounds given in (5.2) 
are indeed reasonable limits. However, even in the reduced form of (5.2) and ( 5 . 3 ) )  
the limits are still inconvenient for applications. In  order to evaluate L, one will 
have to  calculate I, which still includes convolution of the frequency spectrum. Then, 
it becomes almost impossible to express the limits explicitly based on any known 
form of the spectral function and get a reasonably sharp result. Consequently, the 
only result using (5.2) to date was produced numerically. From a practical point of 
view, it would be desirable to express the skewness in a simpler, explicit form in 
terms of some parameters that would also convey physical insight. The empirical 
relationship given in equation (5.1) does fit this requirement because both Phillips 
(1961) and Longuet-Higgins (1963) showed that the deviation from the Gaussian 
distribution of a wave field would be due to the weakly nonlinear interaction. Therefore 
the skewness would be proportional to the wave slope. I n  this section, we are going 
to  evaluate the theoretical bounds of K,  based on (5.2) and a simplified Wallops 
spectral model. The result will be expressed explicitly in terms of an internal para- 
meter, the significant slope of the wave field. 

The simplified spectrum to be used is 

The relationship between this simplified spectral model and that of the full Wallops 
spectrum is equivalent to that of the simplified Phillips (1958) spectrum to the 
Pierson-Moskowitz spectrum (1964). 

Before we start to use this simplified spectral model given in equation (5.4), we 
have to determine the coefficients and compare the properties of this model with the 
full Wallops spectrum. 

The m value in (5.4) is still given by equation (2.4). But the p is different from that 
given in (2.11)). If we impose the constraint of the total energy content, then 

Hence with the help of the dispersive relationship, 

p = (m - 1 ) ( 2 ~ 9 2 .  (5.6) 
Values of ,/3 determined experimentally are compared with the calculated ones from 

both (2.11) and (5.6). The results are shown in figure 5. The agreement between the 
experimental results and (5.6) is quite good, though the values given by (2.11) seem 
better. Now if we force m to be 5, then (5.6) would give the exact value of /3 as in the 
JONSWAP result shown in equation (4.4) as discussed earlier. 

Next, we shall compare the spectrum bandwidth, v, of the simplified spectrum with 
data and the full Wallops spectrum. Using the spectrum form in (5.4), one can easily 
show that the ith moment of the spectrum is 

8 F L M  112 
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where M ,  = F i s  the zeroth moment. Then it follows that 
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(m - 2)2 (5.7) 

where pz is the second central moment of the spectrum. 
The values of v calculated according to (5.7) are also given in figure 7. The agreement 

with the simplified model seems to be the best; even better than the full Wallops 
spectrum. But this fact alone should not be taken as the proof of the superiority of 
the simplified model. There are other criteria, too, as discussed previously. Even on 
this particular aspect, there are possible corrections that may influence the final out- 
come. For example, the unknown surface drift current effect has not been considered. 
The surface drift could shift the apparent frequency of the laboratory waves to higher 
frequency, thus giving a higher significant slope. With a rough estimation of the 
surface drift a t  &u* as reported by Wu (1975), the data points would be shifted slightly 
toward the curve predicted by the full spectral model. For lack of the direct surface 
drift data, this correction was not attempted here. Further studies are needed. 

Based on the above discussion, we concluded that the simplified spectrum would 
still offer a good model accurate enough for most applications. It satisfies the total- 
energy-content requirement, and models correctly the spectral bandwidth. Thus it 
would give an acceptable spectral form, too. The most appealing feature of this sim- 
plified spectral function is its extremely simple form which allows it to be used in 
complicated calculations while still yielding explicit analytic results. Now, we will 
adopt this form for the skewness calculation. 

As stated earlier, the bounds of the skewness of the probability distribution of the 
wave elevation were established by Longuet-Higgins (1963) as given in (5.2) and (5.3).  

Now, if we use (5.4) as the spectral function, then, after some algebra, we get 

- - 6P2g3 
n!(m- 1) (m- 2)‘ 

Thus by combining (5.5) and (5.8), we have 
(m-1) L = 1274- 
(m-2)’ 

Finally, from (5.2) we should have 

(5.9) 

(5.10) 

The values of K,  calculated from (5.10) together with the observed data are given 
in figure 8. Because them values are always larger than 5, it follows that the maximum 
value of the factor (m - l ) / ( m  - 2) is only 1.25. Usually this factor has a value very close 
t,o unity. Thus the empirically determined value of skewness given in (5.1) is almost 
right a t  the middle of the bounds. So are the observational data points. The agreement 
is excellent. 

It would be impossible to improve the sharpness of these bounds without a further 
consideration of the directional properties of the wave spectrum. For lack of such 
information, we submit that  the empirical formula proposed by Huang & Long (1980) 
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FIGURE 8. Comparisons of the observational data and the theoretical bounds of K S .  , labora- 
tory data, Huang & Long (1980); A, field data by Kinsman (1960); +, the average value of 
Kinsman data, with one-sigma error bar; 0, the remotely sensed data from GEOS-3 by Walsh 
(1979). -, the empirical relationship of Huang 8: Long (1980) ; * * . . ., the bounds by equation 
(5.10); - - - - - - ,  the bounds by equation (5.12); -.-.-, and the bound by equation (5.16). 

is well supported by the theoretical bounds, and therefore could be used for practical 
applications with confidence. 

Additional comparisons of the skewness bounds can be added by using other 
spectral models. This exercise is not intended to improve the accuracy or the sharp- 
ness of the bounds. Rather, the comparisons offer indirect tests of the sensitivity of 
the limits as given in (5.2) and the spectral model used. For example, the bounds can 
be calculated from the spectral model given in (1. I )  with a constant value for p. Then 

L = 4pk (5.11) 

If we choose p = as the mean value of p for the field data (see Phillips 1977), we 

should get 0.176 < K,  < 0.404. (5.12) 

These bounds are rather poor even for the field data. The most crucial deficiency of 
these constant-valued bounds is not that they do not fit the data; rather, it is because 
they fail to offer any distinction among different sea states. If we relax the restriction 
on the constancy of p and adopt a variably valued function in terms of an internal 
variable 0, the bounds could be improved substantially. For example, if we use the 
value of as shown in equation (4.4) which is almost equal exactly to that given in 
(5.6) with m = 5,  then the bounds for K,  would be 

(5.13) 
8-2 
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This result is also shown in figure 8. While (5.13) does dramatically improve the 
agreement with respect to a fixed value of p, the agreement is still not so good and so 
sharp as that given by (5.10). This seems to suggest the following facts. First, the 
spectral model is better if the Phillips coefficient is allowed to vary as z function of 
the internal variable, $, rather than stay as a constant. Secondly, the spectral model 
is better if the high-frequency slope of the spectrum is also allowed to vary. Thus, 
this simple application of the Wallops spectrum also serves as an indirect proof of 
the many advantages of the internal variable parametrization scheme and the resulting 
spectral model. 

6. Conclusion 
Based on the conclusion of the theoretical study by Hasselmann (1962, 1963a, b )  

and some laboratory studies, we proposed a wave spectral model that depends only 
on two internal parameters, $ and no, with the significant slope 5 as a measure of the 
nonlinearity of the waves in the field. This spectral model has the properties of variable 
bandwidth, correct energy content and no empirical coefficients to be determined by 
the users. The form is simple. 

One novel feature of the Wallops spectrum is the possibility of using remotely 
sensed data as an input directly. This remote-sensing approach, however, cannot be 
easily adopted for other spectral models. Admittedly, back-scattering measurements 
of wind are also available. But in order to use other models, information on fetch and 
duration are also necessary. Such parameters are difficult to define even under ideal 
conditions. At present, there is no reliable quantitative relationship available to 
define the various parameters needed for other spectral models other than some 
empirical relationships discussed earlier. Thus we feel that the Wallops spectral 
function offers a unique possibility of using the remote-sensing technology directly. 

If one chooses, however, to rely on empirical relationships, then this spectral model, 
though not depending on external variables, can also be used t o  make wave predictions. 
Here we have to know how 5 and no change with wind, fetch, etc. Such relationships 
exist in various empirical forms for fetch-limited cases as in Hasselmann et al. (1976), 
and Phillips (1977). Unfortunately, general formulae that also include decaying cases 
are still unavailable. Additional work is necessary in this area. 
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